

COMPREHENSIVE REPORT
ACME CORPORATION

SECURITY ASSESSMENT 2050
FEBRUARY 28, 2050

Bishop Fox™ Confidential 2050/02/28 2

This engagement was performed in accordance with the Statement of Work, and the procedures were limited

to those described in that agreement. The findings and recommendations resulting from the assessment are

provided in the attached report. Given the time-boxed scope of this assessment and its reliance on client-

provided information, the findings in this report should not be taken as a comprehensive listing of all security

issues.

This report is intended solely for the information and use of Acme Corporation.

Bishop Fox Contact Information:

+1 (480) 621-8967

contact@bishopfox.com

8240 S. Kyrene Road

Suite A-113

Tempe, AZ 85284

mailto:contact@bishopfox.com

Bishop Fox™ Confidential 2050/02/28 3

TABLE OF CONTENTS

Table of Contents .. 3

Executive Report ... 4

Project Overview.. 4

Summary of Findings .. 4

Assessment Report ... 6

Enterprise Architecture Assessment .. 6

Inconsistent Authentication Boundaries ... 6

Product Security Review ... 9

Insecure Workstation Deployment .. 9

Application Penetration Testing ... 13

Weak Cryptography ... 13

Mobile Application Assessment ... 17

Credit Card PAN Interception... 17

Appendix A — Measurement Scales ... 21

Finding Severity .. 21

Bishop Fox™ Confidential 2050/02/28 4

EXECUTIVE REPORT

Project Overview

Acme Corporation engaged Bishop Fox to assess the security of

the Acme infrastructure and www.acme.com. The following

report details the findings identified during the course of the

engagement, which started on January 1, 2050.

Goals

• Perform a comprehensive architecture assessment

against enterprise infrastructure to identify attack

vectors against critical data assets

• Identify attack vectors for PCI information at retail

locations, including point-of-sale (POS) systems

• Breach the security of the business-critical enterprise

and mobile applications on the Acme network

Finding Counts

2 Critical

2 High

4 Total findings

Scope

Acme infrastructure

www.acme.com

Dates

01/01/2050

Kickoff

01/02/2050 –

02/17/2050

Active testing

02/28/2050

Report delivery

2,144

Extracted domain

credentials

98

Decrypted application

passwords

Summary of Findings

The assessment team found that Acme Corporation had significantly invested in security

throughout the organization. However, a lack of cohesive security strategy allowed the

team to exploit gaps in each layer of defense to access critical data, including customer

credit card information, sensitive internal documentation, and other protected

resources.

Security controls on technical infrastructure were incomplete and inconsistently

implemented across the environment. Logging and monitoring successfully identified

assessment team activities but failed to alert appropriate resources.

Bishop Fox recommends that Acme implement the strategic recommendations detailed

in this report to close existing security gaps and improve internal infrastructure

implementation to support security goals.

Bishop Fox™ Confidential 2050/02/28 5

RECOMMENDATIONS

Footprint and Classify Data Exposure on the Internal Network — Identify where

sensitive data resides within a network and document the corresponding location,

access rights, information type, and sensitivity. This comprehensive listing will make

subsequent actions to reduce the risk posed by sensitive information disclosure more

attainable.

Deter, Prevent, Detect, Delay, Respond, and Recover from Unauthorized Access —

Deploy monitoring systems, disinformation tactics, and baiting mechanisms to help

expose attackers that have established presence within the Acme network. Give

precedence to deploying hosts that run honeypots, honeytokens, tarpits,

pseudoservers, canary traps, and software for the detection and logging of exploit

attempts within the Acme network. Investigate incidents following the discovery of

exploit and scanning activities to identify, contain, and eradicate attackers.

Plan for Compromise — Investigate all legal and procedural options prior to releasing

Acme apps. For example, explicitly prohibit jailbroken devices in the terms and

conditions of Acme applications.

Bishop Fox™ Confidential 2050/02/28 6

ASSESSMENT REPORT

Enterprise Architecture Assessment

The assessment team conducted an enterprise architecture assessment with the following

target in scope:

• Acme internal and external infrastructure

Identified Issues

1
INCONSISTENT AUTHENTICATION

BOUNDARIES
CRITICAL

Definition

Authentication boundaries within Acme network are implemented on an individual

application basis, leading to inconsistent authentication controls to critical data. This

allows attackers to bypass security controls that should be in place to defend critical

data.

Details

The assessment team identified applications that had access to critical data assets but

were not protected by strong security controls. The authentication boundary was

implemented as shown in the following figure:

Bishop Fox™ Confidential 2050/02/28 7

FIGURE 1 - Existing authentication boundaries

The lack of strong authentication controls allowed the assessment team to compromise

critical data and more easily compromise systems without being detected by Acme

security personnel.

Affected Locations

Total Instances Systemic

Recommendations

The assessment team recommends the following actions to mitigate the risks of

inconsistent authentication boundaries:

• Re-evaluate existing network segmentation and supporting authentication

controls on a per application basis, based on access to critical data. The

recommended new architecture is shown below:

Bishop Fox™ Confidential 2050/02/28 8

FIGURE 2 - Proposed authentication boundaries

• Add a checkpoint during the design phase of any new application or internal

development to identify which access controls would be appropriate for any new

applications based on the data those applications access. This prevents new

applications from subverting existing security practices.

Additional Resources

The Perimeter Is Dead: Security Without Boundaries

https://www.securityroundtable.org/security-without-boundaries-perimeter-dead/

Bishop Fox™ Confidential 2050/02/28 9

Product Security Review

The assessment team conducted a product security review with the following targets in

scope:

• StoreOps POS application

• Host-based review of POS workstation

Identified Issues

2 INSECURE WORKSTATION DEPLOYMENT CRITICAL

Definition

Insecure workstation deployment occurs when there is a lack of security controls

required to prevent unauthorized access to sensitive data, network resources, and

functionality, which can allow attackers to obtain local administrator access to the

system.

Details

The assessment team gained full control of the point-of-sale (POS) workstation in the

retail location by leveraging the publicly available Windows password bypass tool Kon-

Boot. Kon-Boot is a commercial application that bypasses the authentication process of

Windows-based operating systems.

First, the assessment team interrupted the startup process and modified the BIOS boot

order configuration. The team changed the boot order to load and run USB drives before

the main hard drive. Then the team inserted a USB drive with an image of Kon-Boot and

restarted the workstation. Kon-Boot’s startup process running on the POS is shown

below:

Bishop Fox™ Confidential 2050/02/28 10

FIGURE 3 - Kon-Boot used via bootable USB

Use the following steps to reproduce gaining NT AUTHORITY\SYSTEM privileges on the

target machine:

• Boot the Microsoft Windows operating system with Kon-Boot.

• Press Shift five times to launch (run) cmd.exe.

• Execute (run) the following command in the console from the writable directory

default Windows directory path:

copy c:\windows\system32\cmd.exe cmk.exe

• Execute (run) cmk.exe.

These steps gave the assessment team a command prompt running with NT

AUTHORITY\SYSTEM privileges and allowed the team to install or modify any software on

the system. The following figure shows the terminal with the host name R009201, which

also had the IP address 10.30.92.131:

Compromised

live store POS

Bishop Fox™ Confidential 2050/02/28 11

FIGURE 4 - Administrative level command prompt

The assessment team ran a meterpreter key logger payload on the POS workstation that

captured valid cashier credentials to the POS application, as shown below:

FIGURE 5 - Keylogger targeting a live POS

Additionally, the team extracted cleartext credentials from the system, including one

belonging to a domain admin. The team used those credentials to gain access to the

domain controller and extract 2,144 sets of domain credentials. For a complete list,

please refer to the accompanying spreadsheet.

Affected Locations

Host Name

R009201

IP Address

10.30.92.131

Total Instances 2

Redacted

cashier login

and password

Bishop Fox™ Confidential 2050/02/28 12

Recommendations

To remediate the insecure workstation deployment, the assessment team recommends

the following actions:

• Use a full disk encryption protection solution.

• Disable booting from USB and CD in the BIOS of the machine and protect the

BIOS with a password.

Additional Resources

Managing the Local Admin Password Headache

http://www.darkreading.com/risk/managing-the-local-admin-password-headache/d/d-

id/1139373?

Kon-Boot

http://www.piotrbania.com/all/kon-boot/

http://www.darkreading.com/risk/managing-the-local-admin-password-headache/d/d-id/1139373?%20
http://www.darkreading.com/risk/managing-the-local-admin-password-headache/d/d-id/1139373?%20
http://www.piotrbania.com/all/kon-boot/

Bishop Fox™ Confidential 2050/02/28 13

Application Penetration Testing

The assessment team conducted an application penetration test with the following target

in scope:

• www.acme.com

Identified Issues

3 WEAK CRYPTOGRAPHY HIGH

Definition

Weak cryptography occurs when an application improperly implements an accepted

cryptographic algorithm, uses a custom cryptographic routine, insecurely calls validated

cryptographic libraries, or makes calls to cryptographic libraries with known

vulnerabilities.

Details

The assessment team discovered that the store settings determined whether a user’s

password was encrypted or hashed in the database. Unless there is a legitimate business

case, it is insecure to store user passwords with a reversible encryption scheme.

Regardless, the team found that best practices were not followed with either encrypted

or hashed passwords.

The team identified insecure password storage on line 441 of the StoreIdentity.cs

file, as shown below:

432. // ===

433. // Determine how to handle the password based on the store

434. // settings; checking whether scheme is Encryption or Hashing

435. // ===

436.

437. var pwd = String.Empty;

438.

439. // Encryption check

440. if (CachedStore.Store.PasswordSecurityScheme.StartsWith("E"))

441. pwd = Encryptor.Encrypt(criteria.Password.ToUpper(), 2);

442.

443. // Hashing check

444. if (CachedStore.Store.PasswordSecurityScheme.StartsWith("H"))

445. pwd = Encryptor.SHA512Hash(criteria.Password);

FIGURE 6 - Password storage functionality from DataPortal_Fetch()

The PasswordSecurityScheme property defined whether a store used encryption or

hashing for user password storage. In the case of encryption, the user password was

Bishop Fox™ Confidential 2050/02/28 14

cast to uppercase before it was sent to the encryption function. Modifying all passwords

to uppercase reduces the complexity and entropy, which makes it easier for an attacker

to determine the cleartext password using frequency analysis or brute-force attacks.

Additionally, the Acme.POS.Core.Security.Encryptor class used a weak mono-

alphabetic substitution cipher for storing user passwords. The key values used for the

substitution cipher were hard-coded in the Encryptor class, as shown in the figure

below:

446. public class Encryptor

446. {

447. private Encryptor() { }

448. private static readonly String[] Keys = new String[] {

449. "ABCDEFGHIJKLMNOPQRSTUVWXYZ/0123456789abcdefghijlkmnopqrstuvwxyz!@#$%^&

*()_-,.':;<>=|\\\"",

450. "A5N8WX096EBKVOQJHRY1DIPTM42FZCL3GSU7

!@z#y$x%w^v&u*t(s)r_q+ponmkljihgfedcba\\,.':;<>=|-\"_",

451. "The secret luggage pass code is 12345",

452. …omitted for brevity…

FIGURE 7 - Hard-coded encryption keys

The key highlighted above was used for all user password encryption per the hard-coded

value (2) passed as the keyIndex value to the Encryptor.Encrypt() function. The

complexity of the encryption was reduced further because the custom algorithm

encrypted / ? [] ` { } ~ <space 0x20> characters and any Unicode characters as

[?]. Specifics of how the Acme system converts cleartext passwords using a simple

substitution algorithm are documented line by line in the code comments below:

116. /// <summary>

453. /// Encrypt a string based on the given key index

454. /// </summary>

455. /// <param name="clearText">The string to encrypt</param>

456. /// <param name="keyIndex">The index of the key used to encrypt (key =

0 - no encryption)</param>

457. /// <returns>The encrypted String</returns>

458. public static String Encrypt(String clearText, int keyIndex)

459. {

460. if (clearText.Length == 0) return clearText;// 0 length strings are

just returned

461. StringBuilder encryptedText = new StringBuilder(clearText.Length);

// we use a stringbuilder

462. int _charIndex;

463. char _char;

464. foreach (char c in clearText) // look at each unencrypted

character

465. {

466. _charIndex = Keys[keyIndex].IndexOf(c); // get the chars index in the

desired key string

Bishop Fox™ Confidential 2050/02/28 15

467. _char = (_charIndex == -1) ? '?' : Keys[0][_charIndex]; // return

the corresponding char from the base key or '?' if out of range

468. encryptedText.Append(_char); // append the char to the output string

469. }

470. return encryptedText.ToString(); // return the encrypted string

471. }

FIGURE 8 - Weak substitution cipher used to encrypt user passwords

It was also possible to decrypt a user password without any knowledge of the encryption

scheme by using frequency analysis. This would be possible even if the passwords did

not contain English words because the custom encryption routine reused the same key

space and padding.

The assessment team gained access to the 98 encrypted passwords in the database and

found that several users had the same password:

Username Password Cleartext

Daffy 9/HRKF ABC123

Bugs 9/HRKF ABC123

Tweety 9/HRKF ABC123

Taz 9/HRKF ABC123

Sylvester 9/HRKF ABC123

FIGURE 9 - Decrypted passwords from the Security.Login database table

Additionally, an attacker with access to the application DLLs or application memory

space could retrieve the hard-coded encryption keys and logic used in the substitution

cipher.

When store settings dictated that user passwords be stored using a SHA512 hashing

algorithm, the passwords were more secure than those that were encrypted, but they

still did not follow best practices for password security.

Affected Locations

Lines of Code

• line 441 of the StoreIdentity.cs file

• lines 466-468 of the Acme.POS.Core.Security.Encryptor

Total Instances 2

Bishop Fox™ Confidential 2050/02/28 16

Recommendations

To properly secure sensitive data, the assessment team recommends the following

actions:

• Require that all use of cryptography involve peer-reviewed implementations of

industry-accepted algorithms such as PBKDF2, which is recommended by NIST.

Ensure that the implementation of these libraries within the application be

performed in a secure fashion according to the specific algorithm’s best practice

guidelines.

• First, combine the cleartext password with a unique salt value. This salt

should contain 128 bits of cryptographically random data and be stored in

the same table as the hashed password. The salt should be uniquely

generated every time a password is stored and should not be shared

between accounts or password instances.

• Second, pass the combined value through a one-way hashing function and

store the result as the protected value in the back-end data store.

• Finally, when a user goes through the authentication process, ensure the

application adds the unique salt value to the password and passes the

combined value into the hash function. The result of the hash function

should be compared to the hash stored in the back-end data store. If the

hashes match, the user will be successfully authenticated.

• Ensure passwords are changeable no more than once per day to prevent users

from intentionally defeating the password history system.

• When passwords are used on the client or the server, store them in non-garbage-

collected character arrays, which can be explicitly overwritten by the system. As

soon as a password is no longer needed, it should be overwritten.

Additional Resources

Mono-alphabetic Cipher Solver

http://www.secretcodebreaker.com/scbsolvr.html

MSDN - Crypto.HashPassword

http://msdn.microsoft.com/en-us/library/system.web.helpers.crypto.hashpassword(v=vs.99).aspx

MSDN - Rfc2898DeriveBytes Class

http://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes.aspx

http://www.secretcodebreaker.com/scbsolvr.html
http://msdn.microsoft.com/en-us/library/system.web.helpers.crypto.hashpassword(v=vs.99).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes.aspx

Bishop Fox™ Confidential 2050/02/28 17

Mobile Application Assessment

The assessment team performed a mobile application assessment with the following target

in scope:

• www.acme.com iOS application

Identified Issues

4 CREDIT CARD PAN INTERCEPTION HIGH

Definition

Payment processing systems are tasked with keeping cardholder data secure while in

transit and at rest. Interception attacks target data in transit and, if successfully

exploited, can result in the disclosure of sensitive cardholder information to an attacker.

Details

The assessment team identified a method that could be used to extract cardholder data

and primary account numbers (PANs) from the Acme Anvil application without the

knowledge of the payee.

During on-device penetration testing, the team found that non-swiped transactions left a

PAN in memory long enough for it to be retrieved and exfiltrated on a specially

configured iPad.

The team verified the exploit using a BF-extended version of a tool called Cycript, which

enables anyone with a jailbroken iOS device to programmatically interact with the

Objective-C runtime of a running iOS application. Cycript can be used to modify classes,

add or change UI components, intercept and redirect Objective-C methods, read/write

object properties and instance variables, and examine the application’s heap and stack.

The team conducted the attack against a jailbroken iPad 2 running iOS 6.1. SSH was

installed on the iPad and Cycript was run from the command line on the device. The

highlighted text in the figure below represents commands entered by the team:

$./slcycript Acme\ Anvil

Importing JS functions...

Connecting to Cycript...

cy#

FIGURE 10 - Command used by team to attack jailbroken iPad

Bishop Fox™ Confidential 2050/02/28 18

The cy# prompt is a JavaScript read-evaluate-print loop (REPL) into which the Objective-C

runtime was merged, which made it possible to write JavaScript code that interacted with

an iOS app’s runtime in explorative and programmable ways.

While exploring the runtime, the team observed that non-swipe transaction data was

handled by the ManualEntryController class, which was populated with either

manually entered credit card digits or card data taken from the Card.io image

recognition system. In either case, the masked data was displayed on screen until the

Next button was pressed, as shown below:

FIGURE 11 - Manually entered card data

To locate this data in the running app, the team used Cycript to parse

UIApplication.keyWindow.recursiveDescription for the controls currently on

screen and discovered an object called PPHCardDataEntryView:

<PPHCardDataEntryView: 0x1d96ca60; frame = (259 80; 500 300); layer = <CALayer:

0x1c545470>>

FIGURE 12 - PPHCardDataEntryView object

The team obtained a reference to the object and enumerated the card data, as shown in

the figure below:

cy# pphEntry=new Instance(0x1d96ca60)

"<PPHCardDataEntryView: 0x1d96ca60; frame = (259 80; 500 300); layer = <CALayer:

0x1c545470>>"

cy# card=pphEntry->_cardData

"<TransientCardData: 0x1d9c8dc0>"

cy# card->cardNumber

"1111222233334444"

cy# card->cvv

"999"

cy# card->expirationMonth

12

Bishop Fox™ Confidential 2050/02/28 19

cy# card->expirationYear

2013

FIGURE 13 - Reading credit card data from the TransientCardData object

TransientCardData is the class behind the card data on screen; the hex number

0x1d9c8dc0 is a pointer to the memory address of the current TransientCardData

object. By attaching the object to the application using Cycript and then using Cycript to

access internal classes, the team accessed the cleartext cardholder data in memory.

This attack would be straightforward to automate using MobileSubstrate tweaks to

record credit card data entered manually during a transaction. The Card.io entry system

was also affected due to the use a TransientCardData object to store Card.io card

data.

Affected Locations

Application

iOS application

Total Instances N/A

Recommendations

To mitigate the risks of credit card PAN interception, the assessment team recommends

the following actions:

• Avoid storing, processing, or transmitting unencrypted cardholder data on mobile

devices at all times.

• Apply rigorous anti-jailbreaking countermeasures that are implemented in a low-

level language such as C or assembly. The anti-jailbreaking routines should be

obfuscated and updated with each release of Acme Anvil.

• Ensure that Acme’s terms and conditions prohibit the use of jailbroken devices

with Acme Anvil.

• Employ strict anti-debugging controls to make it harder to debug running

instances of the application.

• Obfuscate all iOS classes, methods, properties, and instance variables in all

release builds.

• Implement anti-tampering technology to prevent attackers from modifying the

Objective-C runtime.

Bishop Fox™ Confidential 2050/02/28 20

• Avoid storing sensitive data in class properties and instance variables, which are

easily accessible to attackers. Instead, dynamically allocate and de-allocate

storage for sensitive data at runtime. This raises the bar for attackers seeking to

locate sensitive information in memory at runtime.

Additional Resources

Cycript

http://iphonedevwiki.net/index.php/Cycript

MobileSubstrate

http://iphonedevwiki.net/index.php/MobileSubstrate

Theos

http://iphonedevwiki.net/index.php/Theos

http://iphonedevwiki.net/index.php/Cycript
http://iphonedevwiki.net/index.php/MobileSubstrate
http://iphonedevwiki.net/index.php/Theos

Bishop Fox™ Confidential 2050/02/28 21

APPENDIX A — MEASUREMENT SCALES

The assessment team used the following criteria to rate the findings in this report. Bishop

Fox derived these risk ratings from the industry and organizations such as OWASP.

Finding Severity

The severity of each finding in this report is independent. Finding severity ratings combine

direct technical and business impact with the worst-case scenario in an attack chain. The

more significant the impact and the fewer vulnerabilities that must be exploited to achieve

that impact, the higher the severity.

Critical Vulnerability is an otherwise high-severity issue with additional security

implications that could lead to exceptional business impact. Examples include

trivial exploit difficulty, business-critical data compromised, bypass of multiple

security controls, direct violation of communicated security objectives, and large-

scale vulnerability exposure.

High Vulnerability may result in direct exposure including, but not limited to: the loss

of application control, execution of malicious code, or compromise of underlying

host systems. The issue may also create a breach in the confidentiality or

integrity of sensitive business data, customer information, and administrative

and user accounts. In some instances, this exposure may extend farther into the

infrastructure beyond the data and systems associated with the application.

Examples include parameter injection, denial of service, and cross-site scripting.

Medium Vulnerability does not lead directly to the exposure of critical application

functionality, sensitive business and customer data, or application credentials.

However, it can be executed multiple times or leveraged in conjunction with

another issue to cause direct exposure. Examples include brute-forcing and

client-side input validation.

Low Vulnerability may result in limited exposure of application control, sensitive

business and customer data, or system information. This type of issue provides

value only when combined with one or more issues of a higher risk classification.

Examples include overly detailed error messages, the disclosure of system

versioning information, and minor reliability issues.

Informational Finding does not have a direct security impact but represents an opportunity to

add an additional layer of security, is considered a best practice, or has the

possibility of turning into an issue over time. Finding is a security-relevant

observation that has no direct business impact or exploitability but may lead to

exploitable vulnerabilities. Examples include poor communication between

engineering organizations, documentation that encourages poor security

practices, and lack of security training for developers.

